При бесповторном отборе предельная ошибка выборки определяется по формулам:
∆, (1.20)
∆, (1.21)
где N – численность генеральной совокупности.
Рассчитав, ошибки мы можем определить пределы, в которых будут находиться характеристики генеральной совокупности и их доверительные интервалы:
, (1.22)
. (1.23)
Пример этого метода (см. задание 3) расчетной части курсовой.
3.
Метод изучения динамики.
Ряд динамики – это ряд значений признаков, расположенных в хронологической последовательности, характеризующих развитие изучаемого явления во времени.
Любой ряд динамики содержит два элемента: уровень ряда (y) и показатель времени (t) [7, с. 106].
Уровень ряда – это значение признака, выраженный в абсолютных, относительных и средних величинах. В зависимости от показателя времени ряды динамики подразделяют на моментные и интервальные. Изменение уровней динамического ряда во времени, возможно с помощью метода аналитического выравнивания. Этот метод можно рассмотреть на примере задания 4 курсовой работы.
Важным направлением анализа рядов динамики является изучение особенностей развития явления за отдельны периоды времени. Для выявления специфики развития изучаемых явлений за отдельные периоды времени определяют абсолютные и относительные показатели:
1. Абсолютный прирост (∆y)- это разность между последующим уровнем ряда и предыдущим (или базисным) [10, с. 53]. Таким образом, абсолютный прирост характеризует увеличение или уменьшение уровня ряда за определенный промежуток времени.
Абсолютный прирост:
а) цепной ∆y= ; (1.24)
б) базисный ∆y= (1.25)
2. Темп роста (Тр) – показывает во сколько раз изучаемый уровень больше или меньше сравниваемого.
Темп роста:
а) цепной Тр=; (1.26)
б) базисный Тр=. (1.27)
3. Темп прироста (Тп) – показывает на сколько процентов изучаемый уровень ряда больше или меньше предыдущего, либо базисного.
Темп прироста:
а) цепной Тп= (1.28)
б) базисный Тп= (1.29)
4. Абсолютное содержание 1% прироста (А) – показывает на сколько вырастит явление, если оно увеличится на 1%.
А= /Тп. Этот метод (см. задание 4) курсовой работы. (1.30)